首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79265篇
  免费   145002篇
  国内免费   28672篇
  2019年   3327篇
  2018年   2816篇
  2017年   2459篇
  2016年   2712篇
  2015年   3164篇
  2014年   3311篇
  2013年   3217篇
  2012年   3766篇
  2011年   4491篇
  2010年   5470篇
  2009年   10324篇
  2008年   4375篇
  2007年   4279篇
  2006年   3150篇
  2005年   3204篇
  2004年   3275篇
  2003年   2647篇
  2002年   3303篇
  2001年   4487篇
  1999年   6817篇
  1998年   8992篇
  1997年   9215篇
  1996年   8543篇
  1995年   8847篇
  1994年   8185篇
  1993年   8047篇
  1992年   7929篇
  1991年   7859篇
  1990年   8683篇
  1989年   7931篇
  1988年   7208篇
  1987年   6304篇
  1986年   5812篇
  1985年   5260篇
  1984年   4033篇
  1983年   3247篇
  1982年   3555篇
  1981年   3223篇
  1980年   3155篇
  1979年   3259篇
  1978年   2964篇
  1977年   2904篇
  1976年   2724篇
  1975年   2306篇
  1974年   2458篇
  1973年   2465篇
  1972年   2813篇
  1971年   2598篇
  1970年   2345篇
  1969年   2391篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
This study investigated the effects of high-intensity ultrasound and glycosylation on the structural and interfacial properties of the Maillard reaction conjugates of buckwheat protein isolate (BPI). The covalent attachment of dextran to BPI was confirmed by examination of the Fourier-transform infrared spectra. Emulsifying properties of the conjugates obtained by ultrasound treatment were improved as compared to those obtained by classical heating. Structural feature analyses suggested that conjugates obtained by ultrasound treatment had less α-helix and more random coil, higher surface hydrophobicity and less compact tertiary structure as compared to those obtained by classical heating. The surface activity measurement revealed that the BPI–dextran conjugates obtained by ultrasound treatment were closely packed and that each molecule occupied a small area of the interface. Combination of ultrasonic treatment and glycosylation was proved to be an efficient way to develop new stabilizers and thickening agents for food in this study.  相似文献   
2.
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.  相似文献   
3.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

4.
5.
Poliovirus RNA species with nucleotides 564 to 571 deleted or with a secondary structure domain (positions 564 to 629) replaced by a shorter irregular oligonucleotide have been engineered previously; these RNAs have been considered quasi-infectious (yielding a single late revertant plaque) and dead, respectively (E. Pilipenko, A. Gmyl, Y. Svitkin, S. Maslova, A. Sinyakov, and V. Agol, Cell 68:119-131, 1992). By using large amounts of these RNAs for transfections, revertant clones with a great variety of genetic changes (point mutations, insertions of foreign sequences, short or extended deletions) were isolated. The pattern of these changes supported the notion that an appropriately spaced oligopyrimidine-AUG tandem is important for efficient poliovirus RNA translation. Structural features within and around this tandem modulated the initiation efficiency. The functional and genetic plasticities of the poliovirus genome are briefly discussed.  相似文献   
6.
7.
8.
PCR based diagnosis in the presence of 8% (v/v) blood.   总被引:26,自引:2,他引:24       下载免费PDF全文
  相似文献   
9.
An avirulent, field-derived isolate of equine infectious anemia virus (EIAV), designated MA-1, was molecularly cloned, and the complete nucleotide sequence was determined for the 3' half of the viral genome. Comparisons between MA-1 and the prototype Wyoming strain of EIAV identified a 66-nucleotide stretch between CAAT (-91) and TATAA (-25) in the U3 region of the long terminal repeat, where sequence divergence was as high as 39.3%. The polymerase chain reaction was used to amplify and clone long terminal repeat sequences from Th-1, the in vivo parental stock of MA-1. Results indicated that the nucleotide sequences of MA-1 and Th-1 clones were less variable than was observed between MA-1 and Wyoming. However, MA-1 and Th-1 markedly differed in the types of enhancer sequences located in the hypervariable region. These results suggest that variation in lentivirus regulatory sequences may be important in EIAV host cell tropism and pathogenesis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号